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Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection. For its clinical
course, host genetic factors are important and rare genomic variants are suspected to contribute. We sequenced
the exomes of 59 Greek and 15 German patients with bacterial sepsis divided into two groups with extremely
different disease courses. Variant analysis was focusing on rare deleterious single nucleotide variants (SNVs).
We identified significant differences in the number of rare deleterious SNVs per patient between the ethnic
groups. Classification experiments based on the data of the Greek patients allowed discrimination between the
disease courses with estimated sensitivity and specificity N 75%. By application of the trained model to the Ger-
man patients we observed comparable discriminatory properties despite lower population-specific rare SNV
load. Furthermore, rare SNVs in genes of cell signaling and innate immunity related pathways were identified
as classifiers discriminating between the sepsis courses.
Sepsis patients with favorable disease course after sepsis, even in the case of unfavorable preconditions, seem to
be affectedmore often by rare deleterious SNVs in cell signaling and innate immunity related pathways, suggest-
ing a protective role of impairments in these processes against a poor disease course.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

According to the new definition (Seymour et al., 2016; Shankar-Hari
et al., 2016; Singer et al., 2016), sepsis is a life-threatening organ dys-
function caused bydysregulatedhost response to infection.Host genetic
factors are important for the clinical course (Sorensen et al., 1988;
Petersen et al., 2010). Only a limited number of molecular genetic stud-
ies in sepsis have been conducted so far - mostly focusing on candidate
genes with known methodological challenges (Sutherland and Walley,
2009). Three genome-wide association studies (GWAS) related to
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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sepsis have been performed focusing on different phenotypes (e.g. ther-
apeutic responsewithin a randomized controlled trial (Man et al., 2012)
or 28-day mortality (Rautanen et al., 2015; Scherag et al., 2016) and
aiming for the identification of common genomic variants. However,
rare genomic variants are suspected to contribute to the so-called
“missing heritability” (Manolio et al., 2009), and the rare protein-affect-
ing ones - predominantly evolved recently - have a high potential of
causing deleterious effects. For example, rare and low-frequency vari-
ants with large effects were recently proven to be associated with coro-
nary artery disease (Helgadottir et al., 2016). Furthermore, disease-
related genes contain a higher proportion of these deleterious variants
than other genes (Fu et al., 2013; Tennessen et al., 2012). Altogether,
this suggests that assessment of rare deleterious protein affecting vari-
ants is a promising approach for elucidating the genetic component of
sepsis. The identified variants can be used as proxies for inferring cau-
sality, a key step in identification of novel therapeutic targets.

To assess these variants, whole-exome sequencing (WES) is a suc-
cessful strategy even for complex diseases like schizophrenia, cardio-
myopathy or inflammatory bowel disease (Christodoulou et al., 2012;
Loohuis et al., 2015; Norton et al., 2012). WES delivers ten-thousands
of variants which subsequently have to be functionally prioritized
which is still a critical issue despite the availability of numerous tools
(Calabrese et al., 2009; Gonzalez-Perez and Lopez-Bigas, 2011; Li et al.,
2009; Reva et al., 2011; Schwarz et al., 2014; Shihab et al., 2013). Re-
markably, a unified approach for testing the association between rare
variants and phenotypes in sequencing association studies was pro-
posed and evaluated using sepsis-associated acute-lung-injury WES
data (Lee et al., 2012).

As sepsis is a complex disease depending on genetic, environmental
and live-history traits, we used a classification experiment as proof of
principle for the role of rare genetic variants in the disease course. To re-
cruit two classes, we carefully selected the most extreme cases from
N4000 sepsis patients showing either a favorable or adverse disease
course. To improve robustness of our approach (i) training and valida-
tion cohorts for the classification experiment were selected from differ-
ent European populations and (ii) different criteria for defining the
extremes in the two patient repositories were applied. Altogether, our
approach allowed discrimination between the disease courses with
high sensitivity and specificity, indicating the relevance of rare deleteri-
ous variants for sepsis research and ultimately new clinical applications.

2. Materials & Methods

2.1. Patients and Samples

Two patient cohorts of different European ethnic background were
collected. For the study only patients were considered with at least
one sepsis-associated organ failure. Patients with blood cultures yield-
ing isolates of coagulase-negative Staphylococcus spp. or skin commen-
sals were excluded. All subjects or their legal representatives gave
written informed consent.

Greek patients were derived from the biobank of the Hellenic Sepsis
StudyGroupwhich is a collection of biomaterial from patientswith sep-
sis, severe sepsis and septic shock conducted in 65 departments in
Greece sinceMay 2006 (www.sepsis.gr). The study protocol is reviewed
and approved by the Ethics Committees of the participating study sites
(approval 26 June 2006). The selection of eligible patients for WES was
done in June 2013 when 3955 patients were enrolled. All patients had a
bacteria-positive blood culture. Further selection for extreme clinical
phenotypes was done by filtering the patients with two different sets
of criteria:

GroupA (N=32): i) age ≥ 18 years; ii) survival after 28 days despite
the administration of empirically administered inappropriate anti-
microbials. The inappropriateness of antimicrobials was realized
when the antibiogram became known;
Group B (N = 27): i) relatively young i.e. age between 18 and
60 years; ii) lack of any comorbidity or other medical condition pre-
disposing to sepsis, iii) critically ill with high mortality rates despite
receiving appropriate therapy.

German patients were treated on the same ICU at the University
Hospital Jena, Germany (August 2008–May 2011). The study approval
was given by the faculty ethics review board (3624-11/12, 2712-12/
09, 2160-11/07). All patients presented in clinically bad condition
with septic shock resulting from anastomosis insufficiency after major
abdominal surgery. Selection of extreme phenotypes from a pool of
120 patients was based on the course of organ dysfunction (measured
by Sequential Organ Failure Assessment (SOFA) Scoring) resulting
from the same focus of sepsis within a period of five days after sepsis
onset:

Group A (N= 5): Patients with fast resolution of organ dysfunction,
defined as decreasing SOFA scores of≥4;

Group B (N=10): Patients with considerable worsening organ dys-
function, defined as increasing SOFA scores of≥4.

Although the definitions of sepsis stages of the study protocol were
those of 2003, retrospective evaluation showed that all patients met
the new Sepsis-3 definition (Seymour et al., 2016; Shankar-Hari et al.,
2016; Singer et al., 2016). Detailed description of sepsis patient's charac-
teristics are given in Table S1. Peripheral blood sampleswere taken from
patients under aseptic conditions and kept refrigerated at −80 °C into
an EDTA-coated tube. For all 74 patients, genomic DNAs were prepared
from 200 μl blood each using the QIAamp DNA Mini Kit (Qiagen).

WES data of 93 healthy German control individuals were generated
at the University Kiel, Germany. These individuals (81/87.1% females;
12/12.9% males; median age: 66; quantiles Q1: 62, Q3: 69) are part of
the population-based cohort POPGEN (Nothlings and Krawczak, 2012)
and their WES data were recently used as control group data in an
early-onset IBD case-control study (Kelsen et al., 2015).

2.2. Whole Exome Sequencing

2–3 μg genomic DNAper sepsis patientwas fragmented on a Covaris
M220 focused ultra-sonicator and exomes were enriched by use of
Agilent SureSelect XT Human All Exon V5 + UTRs kit, targeting
74,856,280 bp encompassing the coding sequence and untranslated re-
gions of 20,791 human genes. After sequence capture target enrich-
ment, individual libraries were prepared which were quantified and
checked for quality by Agilent High Sensitivity DNA chip. Six libraries
were pooled each and sequenced on the Illumina HiSeq2500 platform
(RapidRun, 2 × 100 bp Paired End). On average, 5.4 × 107 sequence
pairs (10.8 Gb) per sample were generated, corresponding to a 215-
fold mean depth of coverage per exome (Table S2). A mean of 21% du-
plicates was detected. DNAs from control individuals were sequenced
at the University Kiel after enrichment using the same kit as for the sep-
sis patients.

2.3. Mapping and Variant Assessment

The Illumina paired-end sequences of the sepsis patients were
mapped to the entire human reference genome version GRCh37/hg19
using the Burrows-Wheeler Aligner BWA (Li and Durbin, 2009) with
the default settings. Data was processed using the Genome Analysis
ToolKit GATK v2.5 (DePristo et al., 2011; McKenna et al., 2010). Regions
with alignment gaps were realigned (GATK IndelRealigner), duplicate
reads were marked using Picard Tools (http://picard.sourceforge.net)
and all aligned read data was subjected to base quality recalibration
(GATK BaseRecalibrator). Reads that did not align, or aligned outside
of the target regions, were discarded. For themapped readswe obtained
an 87-fold mean depth of coverage, ranging from 40-fold to 155-fold

http://www.sepsis.gr
http://picard.sourceforge.net


Fig. 1. Workflow of variant filtering in three steps. SNV = Single Nucleotide Variant;
GATK = Genome Analysis Toolkit; ExAC = Exome Aggregation Consortium, NFE = Non
Finnish Europeans, ~30,000 exomes; ESP = Exome Sequencing Project NHLBI-ESP,
EA = Americans of European Ancestry, ~4200 exomes.
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(Table S2). On average, 88% and 80% of all target positionswere covered
by≥20 and≥30 sequence reads, respectively.When extending the calcu-
lation by 100 bp up- and downstream of the targeted regions, 75% and
65% of all positions were covered by≥20 and ≥30 sequence reads, re-
spectively. Single Nucleotide Variants (SNVs) were called with the
GATK UnifiedGenotyper. On average 67,261 SNV calls (84% of all)
were marked as “PASS” by the GATK variant quality score recalibration
and filtering (GATKVariantRecalibrator and ApplyRecalibration), there-
of on average 34,592 SNVs (51% of all PASS SNVs) are located in the ex-
onic regions targeted by the enrichment kit. For these SNVs, the mean
ratio of heterozygous variants to those homozygous for the alternate al-
lele is 1.48. The average transition/transversion ratio (Ts/Tv) accounts
for 2.73 and was used to calculate the false positive (FP) rate by FP=
1−(obsTs/Tv−0.5)/(expTs/Tv−0.5) with expTs/Tv = 2.8 (Do et al.,
2015) corresponding to a false positive rate of 3.1% (Fig. S1). The
mean X-chromosomal heterozygosity was calculated with 0.02 for
males (N = 51) and 0.29 for females (N = 23) (Fig. S2). These values
are similar to those recently calculated from ~10,000 exomes by Do et
al., reporting a ratio of heterozygous to homozygous SNVs of 1.3–1.8,
Ts/Tv of 2.75–2.85 and X-chromosomal heterozygosity of 0.03–0.07
for males and 0.20–0.40 for females (Do et al., 2015). The on-target,
GATK passed SNVs exhibited a mean depth of coverage of 63× and a
mean genotyping quality of 92. To assess potential population stratifica-
tion, we carried out a principle component analysis (PCA) from 258,943
passed SNVs (with SNPdb entry, excluding X/Y and multiallelic varia-
tions) using the method of Price et al. with default settings (Price et
al., 2006).

All variants assessed by GATK were annotated by the Seattle Se-
quenceAnnotation Program (Ng et al., 2009). For further variant'sfilter-
ing as described in the Results section and Fig. 1, the GATK result vcf-
files were parsed by in-house programs. Mapping and variant calling
for the control individuals were processed at the University Kiel using
the same tools and parameters as described for the sepsis patients
(Table S2). The mean depth of coverage for the on-target GATK passed
SNVs from controls is lower than for sepsis patients (52× vs. 63×),
resulting in a slightly lower mean genotyping quality (84 vs. 92), but
the number of SNVs per sample is similar for both cohorts (34,592 vs.
34,201; Table S2).

2.4. Identification of Rare Variants

According to our hypothesis that rare variants with intermediate or
high phenotypic effect may play an important role in sepsis, we filtered
for rare variants. For their identificationwe explored the currently most
comprehensive exome data sets provided by

1) The Exome Aggregation Consortium (ExAC, version 0.3) containing
data from ~60,000 unrelated individuals of seven ethnical groups
and

2) The NHLBI Exome Sequencing Project (ESP, version ESP6500SI-V2)
encompassing data from ~6500 individuals of two ethnical groups
included in studies of heart, lung and blood disorders.

We compared with the allele frequencies of the ExAC non-Finnish
European group (ExAC-NFE, ~30,000 individuals) and the ESP Ameri-
cans of European ancestry (ESP-EA, ~4200 individuals). Rare variants
were defined byMAF b 0.5% in the ExAC-NFE, ESP-EA and the SNP data-
base dbSNP142. Novel variants are those not represented in ESP, ExAC
and dbSNP142.

The ratio of novel SNVs accounts to 9.3% with respect to the protein
affecting variants (filter 1) and 24.5% for the deleterious SNVs (filter 3).
In addition there is an SNV fraction of 2.6% and 5.9% for filter 1 and 3, re-
spectively, representing variants that are represented in at least one of
the databases but exhibiting the alternate allele only in non-European
populations (Table S3).
2.5. Identification of Rare Deleterious Variants

The functional impact of protein affecting variants can considerably
differ from harmless (benign) to damaging effects. These effects were
evaluated for the rare missense variants by three different programs.
PolyPhen-2 (PH) (Adzhubei et al., 2013) uses a naive Bayes classifier
to predict the functional importance of an allele replacement by using
multiple sequence and structure-based features. The Grantham score
(GS) (Grantham, 1974) evaluates the amino acid change effect accord-
ing to their chemical properties. Finally, SIFT (Kumar et al., 2009) sorts
tolerated from non-tolerated changes according to the conservation de-
gree of the amino acid residues.We considered alleles of missense SNVs
as damaging if they are coincidentally predicted by these three pro-
grams using the following thresholds: PolyPhen-2 PH ≥ 0.904 (probably
damaging), Grantham score GS N 100 (N100, radical and moderately
radical), SIFT ≤ 0.05 (not tolerated). Together with the stop-gain/loss
and the splice donor/acceptor SNVs, these variants were defined as
rare deleterious.
2.6. Validation of Selected Variants

2.6.1. Sanger Sequencing
We randomly selected 139 rare heterozygous SNVs for validation

using the DNA of 57 patients in which the variants were originally
found by WES. PCR primers were selected by Primer 3 (Koressaar and
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Remm, 2007; Untergasser et al., 2012) and Sanger sequencing of the
PCR products was performed on an ABI3730 capillary sequencer using
dye-terminator chemistry and the amplification primers. The sequence
electropherograms were manually inspected using the Global Align-
ment Program GAP4.11 and a decision was based on at least one of
the two sequencing reads exhibiting an unambiguous signal.

2.6.2. CR1
The protein encoded by CR1 contains 17 very similar complement

control protein modules (CCP) or Sushi domains, differing in only
three amino acids. Furthermore, CR1L, a paralog of CR1, contains parts
with high similarity to these domains of CR1. GATK identified a hetero-
zygous stop-gain SNV in CR1 of patient GR-B_01 (chr1:207749025, CNT,
not identified in European populations, MAF b 0.01% in ExAC East and
South Asian populations) which was assigned to CR1 exon 20, corre-
sponding to CCP16. However, due to the repetitive structure of this re-
gion, it was not sure whether this annotation was correct or should be
assigned to CR1, exon 12 (CCP9) or CR1L, exon 28. We therefore cloned
the PCR product used for the Sanger sequencing into pCRTopo4.1, se-
quenced 36 clones using universalM13f/r primers andwere able to dis-
criminate sequence reads with respect to their origin by a sequence
motif upstream of the SNV (Fig. S4).

2.6.3. TEAD4
A hemizygous rare deleterious missense SNV in TEAD4 of sepsis pa-

tient GR-A_16 (chr12:3,131,088, rs141718322, CNT, ArgNCys, MAF
0.14% in Europeans) was investigated for its impact on the Hippo path-
way. We synthesized an expression construct harboring the CNT mis-
sense mutation and performed cell-based assays to examine possible
changes in the TEAD4 protein expression, subcellular localization and
interaction with binding partner YAP.

2.6.3.1. Antibodies and Plasmids. For immunoprecipitation,mousemono-
clonal anti-FLAG M2 antibody was obtained from Sigma and mouse
anti-c-myc antibody was obtained from St. Cruz. For immunoblotting,
primary antibodies rabbit anti-DDDDK tag (FLAG tag) and rabbit anti-
mycwere purchased from Abcam andMillipore/Upstate; the secondary
HRP-coupled goat anti-rabbit antibody was purchased from Dako. RK5-
myc-TEAD4 was a kind gift from Kunliang Guan (Addgene plasmid
#24,638) and pcDNA-FLAG-YAP was a kind gift from Yosef Shaul
(Addgene plasmid #18,881) (Levy et al., 2008; Li et al., 2010). The
myc-TEAD4 Arg268Cys mutation was generated in accordance with
the QuikChange II Site-Directed Mutagenesis Kit protocol, but using
PfuUltra Hotstart (Agilent Technologies) instead of PfuUltra
HighFidelity. Mutagenic primer sequences were the following: 5′-
CCTACCTCGAAGCCGTGGACATCTGCCAAATCTATG-3′ (forward) and 5′-
CATAGATTTGGCAGATGTCCACGGCTTCGAGGTAGG-3′ (reverse). Inser-
tion of the mutation was validated by Sanger sequencing.

2.6.3.2. Cell Culture.HEK293-T cells were maintained in DMEMmedium
supplemented with 10% FCS (Sigma) in a humidified atmosphere with
5% CO2 at 37 °C.

2.6.3.3. Transient Transfection. Transient transfections were performed
using jetPEI™ DNA Transfection Reagent (Peqlab) in accordance with
the manufacturer's instructions.

2.6.3.4. Co-Immunoprecipitation. HEK293-T cells were grown to 60–70%
confluency on 10-cm dishes and transiently transfected as described.
24 h post transfection cells were harvested. Therefore culture dishes
were placed on ice; cells were washed with ice-cold PBS and lysed
with 1 ml ice-cold Co-IP lysis buffer (50 mM HEPES pH 7.5, 150 mM
NaCl, 1 mM EDTA, 1% NP-40 substitute) supplemented with cOmplete
Protease Inhibitor and PhosSTOP (Roche), according to (Li et al.,
2010). Cell lysates were cleared by centrifugation for 10 min at
10,000 rpm, 4 °C; the supernatant was transferred to new reaction
tubes and kept on ice. 500 μl of lysates were incubated with previously
prepared antibody/sepharose beads conjugates for 1 h at 4 °C under ro-
tary agitation. Afterwards tubes were centrifuged for 1 min, 4 °C,
2000 rpm and the supernatant was removed from the beads. 1 ml Co-
IP wash buffer (50 mM HEPES pH 7.5, 500 mM NaCl, 1 mM EDTA, 1%
NP-40 substitute, cOmplete Protease Inhibitor and PhosSTOP was
added to the beads, followed by centrifugation for 1 min, 4 °C,
2000 rpm and removal of the supernatant. After 3 repetitive washing
steps proteins were eluted from the beads by adding 50 μl SDS loading
buffer/0.1 M DTT and subsequent boiling at 95 °C for 10 min. Samples
were centrifuged for 1 min, 4 °C, 2000 rpm and the eluted proteins
were analyzed by Westernblot. Antibody/sepharose beads conjugates
were prepared by incubating either 1 μg (anti-FLAG) or 2 μg (c-myc)
of antibodies with 40 μl of GammaBind Plus Sepharose (GE Healthcare)
per reaction, for 1 h at 4 °C under rotary agitation, followed by 2 wash
steps with Co-IP wash buffer and 1 wash step with Co-IP lysis buffer
to equilibrate the antibody/sepharose beads mixture.

2.6.3.5. Westernblot. After SDS-PAGE in 10% polyacrylamide gels, the
proteins were transferred onto Nitrocellulose membranes (Carl Roth)
by tank blot. Membranes were incubated with blocking buffer (5% fat-
free milk (w/v) in TBS-T (0.1% (v/v) Tween-20, 10 mM Tris pH 7.6,
100 mM NaCl)) for 1 h at room temperature followed by incubation
with 1:1000-diluted primary antibodies in blocking buffer overnight
at 4 °C. After three washes in TBS-T, membranes were incubated with
1:2000-diluted secondary antibody in blocking solution for 1 h at
room temperature, and developed and visualized using ECL Western
Blotting Substrate (Thermo Scientific) and Amersham Hyperfilm ECL.

2.7. Semantic Set Covering Machine

We have developed a predictor for the disease course of patients
after sepsis according to their profiles of rare deleterious SNVs. This pre-
dictormodelwas obtained using a newly developed semantic extension
(Sem) of the Set Covering Machine (SCM) (Marchand and
Shawe-Taylor, 2003; Kestler et al., 2011), a schematic representation
of the Sem-SCM is given in Fig. 2a.

The SCM constructs an fusion decision rule (here a conjunction) of
the type

IF b1 AND…AND bN THEN class1 ELSE class2

that can be used to predict a two-group categorization (class1 vs.
class2) of newly, so far unseen samples. Here, the class labels correspond
to the disease course after sepsis (groups A and B).

Symbols b1, …, bN, denote base classifiers of the sample that can re-
sult in either TRUE (class1) or FALSE (class2, Fig. 2b). A sample is catego-
rized as class1 if all base classifiers result in TRUE, otherwise it is
categorized as class2 (Fig. 2c).

We have chosen semantic base classifiers that are based on function-
al and structural groupings of genes (terms). A single term is a set that
unites all genes (g1, …, gS) that are associated to a description such as
a pathway or GO entry (Fig. 2a). For a single sample, the base classifier
b results in TRUE, if at least one of the corresponding genes (disjunction)
is affected by rare deleterious SNVs (x),

IF g1 ¼ xð Þ OR…OR gS ¼ xð Þ THEN b ¼ TRUEð Þ ELSE b¼FALSEð Þ:

A base classifier can alternatively be used in its negated form (NOT,
Fig.2b). In this case, the base classifier results in TRUE, if no SNV-affected
gene is detected.

Training the Sem-SCMmeans that a set of base classifier b1,…, bN is
selected to form the fusion rule. For our experiments, we utilized
predefined groupings from the Molecular Signature Database
(Subramanian et al., 2005). The chosen repositories are listed in Table
S4.
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The strength of SCM training procedure comes from the fact that it
constructs a sparse logical conjunction (Marchand and Shawe-Taylor,
2003). As the SCM primarily describes one class (class1) an oversized
number of base classifiers will generally lead to a declined sensitivity
for class1 and an increased false negative rate. The base classifiers are se-
lected iteratively and depend on previously selected ones (greedy set
cover algorithm) (Cormen et al., 1993; Haussler, 1988). A candidate
base classifier is chosen in the ith iteration if it maximizes the utility
function

U ¼ jQ j−pjRj:

Here, |Q| is thenumber of samples of class2 that are classified correct-
ly by taking the candidate base classifier into account. |R| denotes the
number of samples of class1 that are misclassified by extending the con-
junction. The parameter p can be seen as aweighting parameter. For our
experiments it was chosen from the set p ∈ {0.5, 1, 2,∞}. The second pa-
rameter of the training algorithm is the maximal number of base classi-
fiers s. It was chosen in the range of s ∈ {1, …, 10}. As we have two
choices for assigning the class label to the outcome of the decision
rule experiments were conducted for both assignments (inv = TRUE/
FALSE).

The performance of the Sem-SCM models was evaluated in leave-
one-out cross-validation (LOOCV) experiments. That is, each sample
was individually removed from the training process and afterwards
used as an independent test sample. The mean performance of the pre-
dictor model was used for estimating its generalization ability. All ex-
periments were performed with help of the TunePareto software
(Mussel et al., 2012).

3. Results

We sequenced the exomes of 59 Greek (GR) and 15 German (DE)
patients with validated bacterial sepsis/organ dysfunction according to
the new Sepsis-3 definition (Seymour et al., 2016; Shankar-Hari et al.,
2016; Singer et al., 2016). Each cohort included two groups of sepsis pa-
tients with either favorable (group A) or adverse (group B) disease
course after sepsis.

The GR groupswere selected from a pool 3955 cases collected by the
Hellenic Sepsis Study to represent two qualitatively extremely different
phenotypes of medical sepsis patients: group A (GR-A, N = 32)
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included patientswhoall survived sepsis, despite unfavorable precondi-
tions given by age, co-morbidities and inappropriate antibiotic therapy,
whereas group B (GR-B, N = 27) comprises younger patients without
predisposing co-morbidities who normally were not expected to devel-
op sepsis and suffered a fatal outcome in nine cases (33%) irrespective of
appropriate antibiotic treatment.

The DE groups represent the quantitative extremes observed among
120 surgical patients at theUniversity Hospital Jenawith the same focus
of sepsis in respect to the course of organ dysfunction within five days
after sepsis onset: group A (DE-A, N = 5): consists of patients with
fast resolution of organ dysfunction, defined as decreasing SOFA scores
(ΔSOFA = SOFADay5 − SOFADay1; median = −11, min = −6,
max = −13), whereas group B (DE-B, N = 10) includes patients with
considerableworsening organ dysfunction (+4,+4,+7) and fatal out-
come in three cases (30%, Tables 1 and S1).

3.1. Higher Rare SNV Load of Greek Vs. German Patients Is Due to Popula-
tion Stratification

From theWES data of the 74 sepsis patients SNVswere identified and
used for a principle component analysis (Price et al., 2006). The first two
components are showing a substantial overlap between either the two
ethnic or disease groups, indicating no simple separation due to popula-
tion stratification effects or clinical phenotype differences, although a
cryptic mixture of ancestries may exist in both cohorts (Fig. S3).

To identify potentially sepsis relevant rare variations, the SNVs were
filtered in three steps (Fig. 1). In the first step, protein affecting SNVs
Table 1
Characteristics of sepsis patients (for individual data see Table S1).

Greek (GR), N = 59a German (DE), N = 15b

Group A B A B

Number 32 27 5 10
Deaths within 28 days 0 9 (33%) 0 3 (30%)
Men 22 (69%) 21 (78%) 4 (80%) 4 (40%)
Women 10 (31%) 6 (22%) 1 (20%) 6 (60%)
Age [median (Q1;Q3)c] 78.0 (65.0;

82.0)
47.0 (33.0;

53.0)
69.0 (53.0;

70.5)
64.5 (51.2;

72.7)
Sepsis focus

– Bacteremia 9 16 0 0
– Acute pyelonephritis 14 2 0 0
– Pneumonia 5 4 0 0
– Cholangitis 2 0 0 0
– Soft tissue infection 1 0 0 0
– Abdominal infections 1 2 5 10
– Peritonitis 0 2 0 0
– Unknown 0 1 0 0

APACHE II [median
(Q1;Q3)]d

17.0 (13.0;
20.5)

18.0 (14.7;
26.0)

27.0 (15.0;
30.0)

22.0 (18.8;
26.3)

SOFA [median (Q1,Q3)]d 5.0 (4.0;
7.5)

9.0 (6.0;
14.0)

11.0 (7.0;
20)

10.0 (6.0;
12.3)

Failing organs [median
(range)]

1 (1–4) 2 (1–5) 4 (2–5) 4 (2–6)

Patients with ALIe 3 0 1 2
Patients with ARDSf 11 16 3 6
Pathogen identified 32 (100%) 27 (100%) 3 (40%) 7 (70%)

– Gram-positive
infection only

4 3 0 1

– Gram-negative
infection only

26 22 1 3

– Two gram-negative
pathogens

1 1 1 0

– Gram-positive and
-negative

1 1 0 2

– Fungi 0 0 1 1

a Medical patients.
b Surgical patients.
c Q: quantile.
d Score at sepsis onset.
e ALI: acute lung injury.
f ARDS: acute respiratory distress syndrome.
were selected, encompassing missense, stop–gained (nonsense), stop–
loss and splice-acceptor/donor variations, which were filtered in a sec-
ond step for those with minor allele frequency (MAF) b0.5%. In the
third step, the raremissense SNVswere filtered for high protein damag-
ing effect, which, together with the stop and splice site affecting SNVs
are referred to as rare deleterious.

Comparing the amount of SNVs for the different filter steps we iden-
tified differences between Greek and German individuals (Table 2).
While the number of all SNVs and protein affecting SNVs do not differ
significantly, we observed both for the rare protein affecting and rare
deleterious SNVs significantly higher amounts for Greek compared to
German patients (Wilcoxon rank sum test, p b 0.001). To assess wheth-
er these differences represent the population stratification between the
two ethnics we used the exome data of 93 healthy Germans (Table S2),
the 1000 Genomes Project (1000_Genomes_Project), the Exome Aggre-
gation Consortium (ExAC) and the NHLBI Exome Sequencing Project
(ESP). Regarding rare protein affecting and rare deleterious SNVs per in-
dividual German patients and controls have a similar SNV load corre-
sponding to non-Finnish Europeans (ExAC-NFE) and Americans of
European ancestry (ESP-EA) whereas that of Greek patients corre-
sponds to Southern European populations (Toscani in Italy - TSI, Iberian
in Spain - IBS) and Africans (ExAC-AFR; Table S5). This is in agreement
with larger heterozygosity in southern compared to northern Europe
(Lao et al., 2008; Novembre et al., 2008).

3.2. Validation Experiments Confirm Low SNV False Positive Rate

Since validation of WES-assessed variants by Sanger sequencing is
still assertively required and regarded as the golden standard for variant
detection byNGS.We selected 139 rare heterozygous SNVs identified in
57 patients and performed PCRs followed by Sanger sequencing. In
total, in 131 cases (94%) sequencingwas successful, confirming the het-
erozygous state for 127 SNVs while 4 SNVs were found to be homozy-
gous for the reference allele (Table S6). We therefore estimate the
fraction of false positive SNVs to 3.0%, which is in agreement with a
rate of 3.1% as calculated by the Ts/Tv ratio (Fig. S1).

Two rare deleterious SNVs were evaluated in more detail. First, in
depth validation of a heterozygous stop-gain SNV in CR1 undoubtedly
confirmed theGATK annotation in a highly repetitive sequence environ-
ment (Fig. S4). The gene encodes for the complement component (3b/
4b) receptor 1 (Knops blood group), a transmembrane glycoprotein
that prevents accumulation of circulating immune complexes and has
an anti-inflammatory effect by inactivation of C3b and C4b. The SNV is
likely to result in either truncated translation (1062 amino acids instead
of 2039) or nonsense-mediated decay of the respective mRNA leading
to a ~ 50% reduced level of CR1 protein in the patient compared to indi-
viduals without the variant allele.

Second, a hemizygous missense SNV in TEAD4 was confirmed and
investigated for its impact on the Hippo pathway. TEAD4 and YAP, a
transcriptional coactivator, are downstream targets of this pathway,
binding to each other by theN-terminal domain of YAP and the C-termi-
nal domain of TEAD4 (Vassilev et al., 2001; Zhao et al., 2008). The
Arg268 residue affected in the patient is located in the alpha-1 loop of
TEAD. Although this loop is not directly involved in TEAD4-YAP binding
(Chen et al., 2010), the Arg268Cys change might have an indirect effect
on the TEAD-YAP complex formation. Therefore we expressed the C N T
missense allele in cell culture. Co-immunoprecipitation assays and im-
munofluorescence stainings (data not shown) revealed that neither
the binding to YAPnor the subcellular localizationwas affected (Fig. S5).

3.3. Rare Deleterious Variants Are Predictive for the Disease Course After
Sepsis

To assess the impact of rare deleterious SNVs on the disease course
after sepsis, we performed classification experiments using SNVprofiles
for training a newly developed Semantic Set Covering Machine (Sem-



Table 2
Variants identified from sepsis patients and controls.

Filter step SNVs

Greek German

Sepsis Controls

GR (N = 59) Avga DE (N = 15) Avga DE (N = 93) Avga

All 289,521 67,199.8 190,671 67,499.9 278,893 67,831.5
1 Protein affecting 45,261 8581.2 25,729 8513.3 48,094 8508.6
2 Rareb protein affecting 17,726 302.8d 4403 251.1 18,218 237.1

Missense 17,236 294.1 4303 244.3 17,627 230.0
Stop and splice 490 8.7 100 6.9 591 7.1

3 Rareb deleterious 2211 40.3d 477 32.9 2615 33.2
Missense, Damagingc 1721 31.6 377 26.0 2024 26.1
Stop-gain (nonsense) 322 5.8 67 4.5 392 4.6
Stop-loss 17 0.3 5 0.3 9 0.1
Splice-acceptor 75 1.3 13 1.0 87 1.1
Splice-donor 76 1.3 15 1.0 103 1.3

a Average per sample.
b MAF b 0.005 in ExAC-NFE and ESP-EA.
c Coincidently predicted to be damaging by PolyPhen, Grantham score and SIFT.
d Significantly higher for GR vs. DE patients (Wilcoxon rank sum test, p b 0.001).
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SCM, Fig. 2). The Sem-SCM preassembles genes that may be affected by
the SNVs in predefined and interpretable sets (terms). These terms can
for instance be “all genes associated to the signaling pathwayWnt” and
can also be utilized as “experts” (base classifiers) for the construction of
a decision rule comprised of the individual “expert opinions” (fusion
classifier, see Fig. 2c). Training the Sem-SCM is based on rare deleterious
variants of the 59Greek patients and theMolecular Signatures Database
(Subramanian et al., 2005)was chosen as source of term sets. Altogether
the database comprises seven libraries with 3242 gene sets associated
Table 3
Leave-one-out-cross validation (LOOCV)modelswith accuracies N75% for the classification of 5
(bottom).

Parametersa Modela Acca Sensa Speca Decision Decision rule

Meta = all, inv = Y, s
= 10, p = 2

1 0.763 0.778 0.750 Group B IF NOT reactome G alp
AND NOT reactome fat
NOT biocarta HER2 pa

Meta = all, inv = Y, s
= 2, p = 2

2 0.763 0.963 0.594 Group B IF NOT reactome G alp

Meta = all, inv = Y, s
= 7, p = 2

3 0.763 0.778 0.750 Group B IF NOT reactome G alp
AND NOT reactome fat
NOT biocarta HER2 pa

Meta = all, inv = Y, s
= 8, p = 2

4 0.763 0.778 0.750 Group B IF NOT reactome G alp
AND NOT reactome fat
NOT biocarta HER2 pa

Meta = all, inv = Y, s
= 9, p = 2

5 0.763 0.778 0.750 Group B IF NOT reactome G alp
AND NOT reactome fat
NOT biocarta HER2 pa

Meta = all, inv = Y, s
= 6, p = 2

6 0.746 0.778 0.719 Group B IF NOT reactome G alp
AND NOT reactome fat

Meta = react, inv = Y,
s = 2, p = 2

7 0.729 0.963 0.531 Group B IF NOT reactome G alp

Meta = react, inv = Y,
s = 3, p = 2

8 0.729 0.963 0.531 Group B IF NOT reactome G alp
reactome amine comp

Meta = kegg, inv = N,
s = 4, p = Inf

9 0.712 0.906 0.481 Group A IF NOT kegg inositol ph
long term potentiation

Meta = all, inv = Y, s
= 3, p = 2

10 0.712 0.852 0.594 Group B IF NOT reactome G alp

Meta = kegg, inv = Y,
s = 3, p = 1

11 0.712 0.519 0.875 Group B If kegg MAPK signaling
myeloid leukemia

Parametersa Model Gro

Meta = all, inv = Y, s = 10, p = 2 1 DE-
DE-

Meta = all, inv = Y, s = 2, p = 2 2 DE-
DE-

a Acc: accuracy, Sens: sensitivity, Spec: specificity, meta: source of meta-information, inv: in
parameter (0.5, 1, 2, ∞).
to specific terms, like “Wnt signaling” (Table S4). Optimal parameters
were chosen on the training set in a leave-one-out cross-validation
(LOOCV) experiment balancing accuracy, sensitivity and specificity.

In the training phase, eleven out of 640 model configurations
achieved accuracies N70% (71.2–76.3%), sensitivities of 51.9–96.3% and
specificities of 48.1%–87.5% (Table 3). Ten of thesemodels construct de-
cision rules which are completely based on negated sets (NOTdetected)
predicting an unfavorable disease course (group B) if rare deleterious
SNVs are absent in genes involved in the pathways and/or regions. Six
9Greek sepsis patients (top) and application of the two bestmodels to 15 German patients

ha Q signaling events AND NOT detection of stimulus AND NOT PID CDC42 pathway
ty acyl CoA biosynthesis AND NOT biocarta toll pathway AND NOT chr15q26 AND
thway
ha Q signaling events AND NOT detection of stimulus

ha Q signaling events AND NOT detection of stimulus AND NOT PID CDC42 pathway
ty acyl CoA biosynthesis AND NOT biocarta toll pathway AND NOT chr15q26 AND
thway
ha Q signaling events AND NOT detection of stimulus AND NOT PID CDC42 pathway
ty acyl CoA biosynthesis AND NOT biocarta toll pathway AND NOT chr15q26 AND
thway
ha Q signaling events AND NOT detection of stimulus AND NOT PID CDC42 pathway
ty acyl CoA biosynthesis AND NOT biocarta toll pathway AND NOT chr15q26 AND
thway
ha Q signaling events AND NOT detection of stimulus AND NOT PID CDC42 pathway
ty acyl CoA biosynthesis AND NOT biocarta toll pathway AND NOT chr15q26

ha Q signaling events AND NOT reactome triglyceride biosynthesis

ha Q signaling events AND NOT reactome triglyceride biosynthesis AND NOT
ound SLC transporters
osphate metabolism AND NOT kegg amyotrophic lateral sclerosis ALS AND NOT kegg
AND NOT kegg butanoate metabolism
ha Q signaling events AND NOT detection of stimulus AND NOT PID CDC42 pathway

pathway AND NOT kegg cysteine and methionine metabolism AND NOT kegg acute

up Predicted as A Predicted as B

A (N = 5) 4 1
B (N = 10) 3 7
A (N = 5) 1 4
B (N = 10) 2 8

version of class labels (Y/N), s: maximal number of base classifiers (1–10), p: weighting
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terms are part of the decision in more than two models, including five
pathways related to cell signaling and innate immunity, namely the
“Gαq signaling”, “detection of stimulus”, “CDC42”, “Toll” and “HER2”.
These five pathways encompass 336 genes, of which 36 genes (11%)
are affected by rare deleterious SNVs in GR-A in contrast to only one
gene in GR-B. The pathway with the most affected genes in A is “Gαq

signaling” (20 out of 36, 55%). Remarkably, in nine patients rare delete-
rious SNVs were found inmore than one of the 36 genes. Two genes are
affected in two different patients (Table S7). The best model configura-
tion achieved anaccuracy of 76.3% (sensitivity for GR-B 77.8%/specificity
75.0%) in the LOOCV (Fig. 3a and b) and proved to be significant in a re-
sampling experiment (p = 0.021, 10,000 relabelings; Supplementary
Text).

The performance of the model was further validated on 15 German
sepsis patients, which were not included in the training phase. In this
experiment, the model correctly classified four out of five DE-A and
seven out of ten DE-B patients, corresponding to an accuracy of 73.3%
(sensitivity 70.0%/specificity 80.0%, Fig. 2c, Table 3).

4. Discussion

To our knowledge, our study is thefirst reported attempt to estimate
the contribution of rare SNVs to the disease course after sepsis. Based on
deleterious protein-affecting SNVs, distinction of two different sepsis
courses was successful by classification experiments with an SCM-
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Fig. 3. Prediction of the disease course after sepsis onset based on rare deleterious, protein aff
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code see legend (a).
based model. In this investigation no power estimates were performed,
as the classification model is not a statistical testing procedure. The
quality of the Sem-SCM model is rather characterized in terms of
model complexity and overfitting. To ensure heremeaningful classifica-
tion results, minimal decision rules are constructed which are then
fused as mixtures of experts. This enables us to stay below the limit
given by the theorem of Cover (Cover, 1965) for every base classifier
and also uses classifiers with finite Vapnik–Chervonenkis dimension
below that of a linear discrimination rule.

A possible causative/functional impact of the identified rare deleteri-
ous variants on the sepsis course is supported by two lines of evidence.
First, the accuracy of our model with the original dataset was
outperformed only by few (2.1%) relabeling experiments. Second, the
training process revealed, that the best models with respect to the clas-
sification accuracywere based on cell signaling and innate immunity re-
lated pathways, namely “Gαq signaling”, “detection of stimulus”,
“CDC42”, “Toll” and “HER2”.

In all cases, genes involved in these pathways are more often affect-
ed by rare deleterious SNVs in the patientswith favorable disease course
despite adverse preconditions (groupA). This suggests that the putative
protein damaging alleles may be protective in case of sepsis, either by
loss or gain of gene function, influencing positively the patient's disease
management by preventing or limiting overshooting reactions. It also
implies that these variants may be of disadvantage, i.e. causing damag-
ing effects, under circumstances not related to sepsis. An example for a
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protective rare splice donor SNV in anti-fungal immunity and intestinal
inflammation has recently been described, resulting in negative regula-
tion of the inflammatory response by CLR-induced CARD9-mediated cy-
tokine production (Cao et al., 2015).

The five pathways mentioned above include 336 genes of which 22
are involved in more than one of the five. The most comprehensive is
the Gαq signaling pathway including 184 genes, thereof 19 (10%) with
rare deleterious SNVs in group A vs. one (0.5%) in group B. Different cel-
lular responses are set in motion by this pathway, mostly, but not
Fig. 4. Structuralmodel of the PAR1-Gα14 complex indicating a functional impact of amino acid e
1 (PAR1) (Zhang et al., 2012) was alignedwith that of the β2-adrenoceptor (β2AR) contained in
(α, βγ) (Chung et al., 2011) using the PyMOLMolecular Graphics System. The structure of the N
model (Nishimura et al., 2010) and alignedwith theN-terminus of Gαs in theβ2AR-Gs-complex
predicted contact site between PAR1 and the amino terminus of Gα14. The junction between t
flexibility of the loop. The C- and N-terminal ends of helices III and IV, respectively, in the st
light purple. R33 of Gα14 is likely to come into very close proximity to the second intracellular
previously shown to be important for PAR1-Gq-coupling (Zhang et al., 2012), would be b3 Å in
exclusively triggered by stimulation of phospholipase C-β (PLCβ) iso-
zymes through receptor-mediated activation of members of the Gαq

subfamily of G protein α subunits, including Gαq proper, Gα11, Gα14,
and Gα15/16 (Hubbard and Hepler, 2006). Several of the Gαq signaling
pathway genes affected in Greek patients encode important mediators
of platelet activation, most prominently: F2 (thrombin) and F2R
(PAR1), its Gq-coupled receptor. Thus, platelet activation as part of
wound healing might be a key process differing between groups A and
B. Some of the rare SNVs are predicted to be functional. For example,
xchange R33C inGα14. (a) The known structure of the humanprotease-activated receptor
the quaternary complex between the agonist-bound form of β2ARwith heterotrimeric Gs

-terminus of Gα14was predictedwith Swiss-Model using the structure of humanGαq as a
. The structures of Gβ1 and Gγ2 are those of theβ2AR-Gs-complex. (b) Detailed viewof the
ransmembrane helices III and IV are missing in the structure of PAR1, presumably due to
ructure of PAR1 are marked by circles. In this region, the structure of β2AR is shown in
loop of PAR1. For example, its distance to Gln142 of β2-AR, corresponding to L211 of PAR1,
this model.
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the amino acid exchange R33C in Gα14 (GNA14) is likely to be involved
in GPCR-mediated Gα14 activation (Fig. 4). Furthermore, S412Y in PAR1
is located in a region of the receptor that is implicated in receptor in-
ternalization via phosphorylation- and ubiquitination-dependent
sorting (Chen et al., 2011). Some of the genes affected in the Gq

reactome by rare SNVs have been shown to be involved in sepsis.
Thus, PKCθ (PRKCQ) has been demonstrated in septic patients to im-
pair chemokine-induced arrest and endothelial transmigration of
neutrophils (Berger et al., 2014). G2A (GPR132) is activated by
commendamide, a metabolite of human commensal bacteria
(Cohen et al., 2015) and pretreatment of mice with G2A-specific an-
tibody inhibited lysophosphatidylcholine (LPC)-induced protection
from cecal ligation and puncture (CLP) lethality and inhibited the
LPC-mediated bactericidal activity of neutrophils in response to E.
coli ingestion (Yan et al., 2004). Thus, genetic alterations in the Gq

reactome may also modify the microbe-human-host- relationship.
More details are explicated in Supplementary Text.

Our results that pinpoint the Gαq signaling pathway as classificator
for the different sepsis courses of patient groups A and B are also sup-
ported by a recent GWAS of common variants with respect to the 28-
day mortality (Scherag et al., 2016). Among the identified 14 GWAS
loci, three are related to Gαq signaling or G-coupled receptors. The top
discovery GWAS association signal covers VPS13A (related to autopha-
gy) and the 3′ end of the above mentioned GNA14. Therefore, both
genes are promising functional candidates for the observed association.
A second locus highlights HRH1 (histamine receptor H1), which is part
of the Gαq signaling and interleukin receptor SHC pathways. Finally,
GPR12 (G protein-coupled receptor 12) was also identified by the
GWAS approach. It has to be noted, though, that the particular GWAS
variants in HRH1 and near GPR12were not supported by the GWAS val-
idation data (Scherag et al., 2016).

Although the study appears limited in size, the effort for its enroll-
ment was large, as the investigated extreme disease phenotypes are
rare and e.g. the 59 Greek samples were selected from almost 4000 pa-
tients. Furthermore, the robustness of our findings is supported by two
facts. First, the classification model was trained and validated using
samples derived from different ethnical groups. Second, the two groups
of sepsis patients with either favorable (group A) or adverse (group B)
disease course after sepsiswere selected in the two ethnic groups bydif-
ferent criteria. The GR samples were chosen from medical patients to
represent two qualitatively extremely different clinical phenotypes,
whereas the DE groups represent opposite quantitative extremes
among surgical patients. Our findings indicate that careful selection of
extremely different clinical phenotypes enables the identification of
rare variants underlying complex traits in heterogeneous populations
and that respective studies are not limited to populations with reduced
allele diversity like Icelanders (Helgadottir et al., 2016).

Our study has not the power to decide which SNVs in which genes –
probably in combination or together with more frequent variants – have
the assumed protective effect. The proteins encoded by the affected
genes, however, are potential therapeutic targets and functional evalua-
tionshave to be carriedout tonarrowdown thekeyplayers. The functional
relation of the identified pathways, namely cellular signaling, pathogen
recognition and immune response, underline the relevance of our findings
for a better understanding of sepsis and may ultimately lead to improved
and personalized treatment options for the disease course.
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